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Abstract This paper uses the micropolar nonlinear wave theory in order to develop an 
inverse approach for capturing the size and location of inhomogeneities embedded into a 
micropolar material. We specify that the inhomogeneities have dimensions comparable to the 
average grain size of the material. The natural frequencies of a structure represent its 
signature of the dynamic behaviour, and any defect or change into the internal structure of the 
material is felt by the vibrations in the sense of modifying their natural frequencies. Based on 
the analysis of the interrelations between natural frequencies and the structure of the material, 
an unconstrained minimization algorithm is built by minimization of the least square distance 
between computed and measured natural frequencies. We show that the effect of the size and 
location of the defects on the natural frequencies of the structures is a real feature that helps 
us to identify defects into the material. 
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1. INTRODUCTION 

The theory of micropolar materials was introduced in the years 1960 by Eringen [1-5]. The 
theory describes materials with microstructure. The classical continuum mechanics considers that a 
material particle is characterized by its position only, and no by any orientation within the material.  
Micropolar material particle has additionally an orientation defined by a director which describe the 
microrotation of the particle [6, 7]. The micropolar material concept is described by the Noll's idea of 
simple materials originally described for viscous fluids.  

The classical continuum mechanics is not inadequate for identification of defects in material. 
The defects have comparable sizes with the average grain sizes, and the wavelength of the waves is 
comparable with the average grain size of the granular material and also with the size of defects. That 
means, the motion (i.e. macro-motion) of the material described by only the deformation functions 
does not describe movement of grains and of the body constituents even though they may be defects. 
The micropolar theory undergoes the additional micromotion that describe the rotation and 
deformation of the constituents at the microscale. 

In the deformable body theories, the famous names as Fresnel [8], Navier, Poisson, and Cauchy 
[9] are known as the precursors to the micropolar theory. Influenced by the Newtonian ideas, Green 
[10] introduced the continuous systems of points, and Lord Kelvin [11] associated to the Green theory 
a continuous medium in which a moment may be exerted at any point in the body. Helmholtz [12] and 
Bertrand [13] developed the Green theory in electromagnetism.  

Bernoulli and Euler [9], and also the Poinsot’s theory of couples [14] represent a natural way to 
unite the various concepts of deformable media into a single geometric definition. Starting from the 

http://rjm.journals.srmta.ro/


 Defects identification in micropolar materials 4 
 
idea that a deformable line is a 1D continuous one-parameter set of triads, a deformable surface is a 
two-parameter set, results that a deformable medium is a three-parameter set [15]. Let's not forget we 
can add the time t to these geometric descriptions.   

This paper advances a method for identifying the defects of a micro-structured plate on the basis 
of the free vibrations. The effect of shear waves is taken into consideration by considering a 
third-order theory for the displacement field. There are four type of waves propagating at distinct 
phase velocities through the plate. But of these, only two coupled shear waves have the wavelengths 
comparable to the size of defects.    

2. BASIC EQUATIONS 

The basic equations of the theory of micropolar elasticity are the following [1-6, 16] 
 
Balance of momentum 

, 0kl k luσ −ρ = ,                                    (1) 

Balance of moment of momentum 

                     , 0rk r klr lr km e j+ σ −ρ ϕ = ,                             (2) 

Conservation of energy 

              , ,( )kl l k klr r kl l kv e mρε = σ − ξ + ξ ,                         (3) 

Constitutive equations 

 , , , ,( ) ( )kl r r kl k l l k l k klr ru u u u eσ = λ δ +µ + +ϑ − ϕ ,                 (4) 

                        , , ,kl r r kl k l l km = αϕ δ +βϕ + γϕ  ,                       (5) 

where { , , , , }C = λ µ ϑ α β  are the material moduli, klσ  is stress tensor, ρ  is density, ku is 
displacement vector, ε is internal energy density,  klme is permutation symbol ( 

123 231e e= = 312 132 321 213 1e e e e= − = − = − = , and all other 0klme = ), klm is couple stress tensor, kϕ is 
microrotation vector, j  is microinertia, kv is ku , kξ is kϕ . We use rectangular coordinates kx  
( 1, 2,3k = ) or 1 2 3( , , )x x x y x z= = = .  

Indices following a comma indicate partial differentiation, and a superposed dot indicates the 
time rate.  Eringen has shown that   

0 3 2≤ λ + µ +ϑ ,  0 ≤ µ , 0 ≤ ϑ ,  0 3 2≤ α + γ , −γ ≤ β ≤ γ  , 0 ≤ γ .            (6) 

 Upon substituting (4)-(5) into (1) and (2) we obtain 

 2 2 2 2 2
1 3 2 3 3( ) ( ) ( ) ( )c c u c c u c u+ ∇ ∇ − + ∇× ∇× + ∇×ϕ =  ,                   (7) 

where 

             2
cc λ +µ
=

ρ
,  2

2c µ
=
ρ

,  2
3c ϑ
=
ρ

, 

  2
4c

j
γ

=
ρ

,  2
5c α +β
=

ρ
,  2

0 j
ϑ

ω =
ρ

 .                       (8) 
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We then decompose the vectors u  and ϕ  into scalar and vector potentials                      
u q U= ∇ +∇× ,  0U∇⋅ = and ϕ = ∇ς +∇×φ ,  0∇⋅φ =  which must verify the equations                                         

 
2 2 2
1 3( )c c q q+ ∇ = , 2 2 2 2

4 5 0( ) 2c c+ ∇ ς − ω ς = ς  
2 2 2 2
2 3 3( )c c U c U+ ∇ + ∇×φ =  , 

                    2 2 2 2
4 0 02c U∇ φ− ω φ+ω ∇× = φ .                            (9) 

The first two equations (9) are uncoupled, while the last two are a coupled system in vectors U  
and φ .   

Consider now that the plane waves propagating in the positive direction of the unit vector 
n have the form 

      0 exp[i ( )]S S k n r vt= ⋅ − ,                                    (10) 

where  and   with ,a b  complex constants ,A B  complex constant vectors, k
v
ω

=  the 

wave-number and r the position vector. By substituting (10) into the first two equations (9) we obtain 

              2 2 2
1 1 3v c c= + ,  

2
2 2 2 0
2 4 5 22v c c

k
ω

= + + ,                        (11) 

where 1v  is the velocity of a longitudinal displacement wave and 2v , the velocity of a longitudinal 
microrotation wave  with its microrotation vector in the direction of the propagation. From the last 
two equations (9) we obtain 3v and 4v as roots of the equation      

2 2 2
2 2 2 2 2 2 20 0 0

4 2 3 4 2 32 2 21 2 1 2 1 2 ( ) 0X c c c X c c c
      ω ω ω

− − + − + − + + =      ω ω ω      
,               (12) 

with 2X v= . The remaining two waves are a transverse displacement wave U  of velocity  3v  

coupled with a transverse microrotation φ  of speed 4v . These waves exist only for 02ω≥ ω . 
Below this frequency waves degenerate into sinusoidal vibrations decaying with distance from the 
source.  

 

3. DETERMINATION OF THE NATURAL FREQUENCIES RESULTS 

Consider a micropolar plate of  thickness H , length a  and width b . The Cartesian 
coordinate system Oxyz  is located at the middle plane denoted by Ω , with the z axis normal to the 
plane. A small cube-defect is embedded into the plate and centered at 0 0 0( , , )x y z  with size a′ . The 
size of the defect is comparable with the grain size and is characterized by a set of constants 

0 0 0 0 0 0 0{ , , , , , , }C = λ µ ϑ α β γ ρ  . Over the whole medium we can write 

                        *
0( , ) ( , )C x y C C x y= + ,                            (13) 

where 
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 0
0

for belonging to the defect,
( , )

0 everywhere else.
C x, y

C x y 
= 


                     (14) 

The both longitudinal q and ς  and the transverse U and φ  waves are taken into 
consideration. By assuming a harmonic time-dependence, we write 

         0( , ) ( ) exp(i )U x t U x t= ω  ,  0( , ) ( ) exp(i )x t x tφ = φ ω ,                     (15) 

with  0 ( )U x and 0 ( )xφ , the unknown functions. 
The shear deformation theory proposed by Frederiksen [17] is based on a displacement field in 

which the displacement in the x  and y  directions are expanded as cubic functions of the thickness 
coordinate, and the transverse deflection is assumed to be constant through the thickness. For a 
micropolar elastic body we extend this theory by supposing that 0 0{ , }S U= φ  are cubic functions of 
the thickness coordinate 

 2( , , ) ( , ) ( , )i i iS x y z z x y z x y= Ψ + Φ ,                       (16) 

with 1,2i = . In our notation 1 0S U=  and 2 0S = Φ .  
The unknown expansion functions are , ,Ψ Φ Σ  . Following the Ritz procedure, we assume the 

solution for  , ,Ψ Φ Σ  are finite series with unknown coefficients 

,

2 2( , )
N

i imn m n
m n

x yx y X w w
a b

   Ψ =    
   

∑ , 

        
,

2 2( , )
N

i imn m n
m n

x yx y Y w w
a b

   Φ =    
   

∑  ,                         (17) 

  
,

2 2( , )
N

i imn m n
m n

x yx y Z w w
a b

   Σ =    
   

∑ , 1, 2,3, 4i =  

where 
1 1

. 0 0

p pN

m n m n

− −

= =

=∑ ∑ ∑ and ( )mw ε , 1 1− ≤ ε ≤  are the assumed functions defined for the 

nondimensional variable ε .  
These functions are chosen to satisfy the following requirements: both functions and their first 

derivatives are continuous; the functions are complete and admissible i.e. satisfy the boundary 
conditions of the plate. A good set of functions is the one of the degenerated beam functions [17] 

0 ( ) 1w ε =  ,  1( )w ε = ε  

cosm Iw k= ε , 
2

2
mI +

= , 2,6,10,...m =  

coshm Jw k= ε , 
1

2
mJ +

= ,  3,7,11,...m =                        (18) 

sinm Iw k= ε ,  
2

2
mI +

= ,   4,8,12,...m =  

sinhm Jw k= ε , 
1

2
mJ +

=  ,  5,9,13,...m =  

where mk  are the solution of the equation 
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         tan ( 1) tanh 0m
m mk k+ − =  ,  2,3, 4,...m =                     (19) 

Though the functions (18) do not satisfy free edge conditions, it was shown [17] that for 
problems involving free edges the series composed of these functions converge rapidly towards 
highly accurate solutions. The arbitrary coefficients in the series (17) are determined by minimizing a 
functional defined as to measure how well equations (9) are verified 

                                                              

 
/2 4

2

1/2

H

i
iH

F s
=Ω −

= ∑∫ ∫ ,                                  (20) 

where 
2 2 2 2

1 1 3( )s c c q q= + ∇ +ω , 

       2 2 2 2 2
2 4 5 0( ) 2s c c= + ∇ ς − ω ς +ω ς  ,                          (21) 

2 2 2 2 2
3 2 3 3( )s c c U c U= + ∇ + ∇×φ+ω , 

2 2 2 2 2
4 4 0 02s c U= ∇ φ− ω φ+ω ∇× +ω φ . 

The procedure yields to an eigenvalue problem with 2ω  as the eigenvalue and the unknown 
coefficients as the eigenvector.   

4. INVERSE PROBLEM 

Suppose that the defect is described by the following parameters: its centre 0 0 0( , , )x y z ,  side 
a′ and the set of parameters 0 0 0{ , , }λ µ ρ  which are different from the matrix parameters. 

 0 0 0 0 0 0( , , , , , , )P x y z a′= λ µ ρ .                        (22) 

The objective of the optimisation procedure is to minimise the difference between ( )mesQ P and 
( )calcQ P where 1 2{ , ,..., }NQ = ω ω ω .  mesQ represents the measured natural frequencies of the plate 

and calcQ  the corresponding calculated values as a function of the parameters P . Thus, the objective 
function can be formulated in the sense of the global normalised least squares error   

 
2

1

2

1

( )
( )

( )

N
mes calc
j j

j
N

mes
j

j

Q Q
P

Q

=

=

−
Ψ =

∑

∑
.                        (23) 

The Davidon-Fletcher-Powell quasi-Newton algorithm has been used because it requires a 
relatively low number of objective function evaluations and because of its ability to converge 
quickly near minima.   

As an example, we consider a polycrystalline metal plate whose grain size is approximately 
50.5 10 m−× . In order to simplify the numerical analysis we suppose that this material is 

characterized by 

  40GPaλ = µ = , 0.2GPaϑ = , 3GNα = β = γ = , 7 26.25 10 mj −= × , 31160kg/mρ = .    

The plate dimensions are 



 Defects identification in micropolar materials 8 
 

 100mma = , 110mmb = , 2mmH = .    
  
We consider a cubic defect of the side 52 10 ma −′ = × , located in the point (15, 15,0)−  

characterized by 
 0 4λ = ×λ , 0 4µ = ×µ , 0ϑ = ϑ , 0α = α , 0β = β , 0γ = γ  , 0 1.5ρ = ×ρ  .   

 First, we have applied the direct problem to calculate the natural frequencies. The dispersion curves 
for both longitudinal and transversal waves are shown in Fig.1. 

 

 
Fig.1. Dispersion curves for both longitudinal and transversal waves. 

 
The convergence is very rapidly convergence achieved when degenerated beam functions 

(18)-(19) are employed. 
To calculate the eigenvalues, the Podlevskii procedure is used [18, 19]. Computational aspects 

of this procedure are presented next.  
Podlevskii uses an iterative algorithm for finding the maximum and minimum approximations 

for each eigenvalue λ . The algorithm is based on a numerical procedure for calculating the first 
and second derivatives of the determinant of the problem. It is well known that, for any fixed λ , the 
matrix ( )D λ is 

  ( ) ( ) ( )D L Uλ = λ λ ,                                   (24) 

where ( )L λ  is a lower triangular matrix with unit diagonal and ( )U λ  is an upper triangular matrix. 
We add that the characteristic equation  

 ( ) det ( )f Dλ = λ ,                                      (25)  

is analytic. We suppose that f has m zeros 1 2, ,..., mλ λ λ , where the number m is given by 
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 0
1 ( )d

2 i ( )
fm s
f
′ λ

= = λ
π λ∫ .                                    (26)  

Defining 
1 ( )d

2 i ( )
k

k
fs
f
′ λ

= λ λ
π λ∫ , 1, 2,...,k m= ,                        (27) 

 we have 

 
1

m
k
j k

j
s

=

λ =∑ ,  1, 2,...,k m= .                              (28)   

Podlevskii procedure uses an iterative two-sided algorithm for refining the rough 
approximations to the eigenvalues that were obtained by using some or other method.   

Suppose that 0λ  is an approximation of the eigenvalue *λ . The iteration procedure can be 
initiated from 0λ   

 2 2
2 1 2 2

2 2 2

( ) ( )
( ) ( ) ( )

m m
m m

m m m

f f
f f f+

′λ λ
λ = λ −

′ ′′λ − λ λ
, 0,1,...m =                    (29)  

2 1
2 2 2 1

2 1

( )
( )

m
m m

m

f
f

+
+ +

+

λ
λ = λ −

′ λ
. 

If the initial approximation is situated to the left of *λ , then the others approximations of *λ  
are calculated as 

 *
0 2 2 2 1 3 1... ... ... ...m m−λ < λ < < λ < < λ < < λ < < λ < λ ,               (30)  

or 
*

0 1 2 1 2 4 2... ... ... ...m m−λ < λ < < λ < < λ < < λ < < λ < λ .               (32)  

If the initial approximation is situated to the right of *λ , then the others approximations of 
*λ  are calculated as 

 *
1 3 2 1 2 2 0... ... ... ...m m−λ < λ < < λ < < λ < < λ < < λ < λ ,               (30)  

or 
*

2 4 2 2 1 1 0... ... ... ...m m−λ < λ < < λ < < λ < < λ < < λ < λ .               (32)  

 
In the iterative process (29), the values of ( )f λ  and its derivatives at a specific λ   are used 

by using of decomposition  

 
,

,
2 .

D LU
B MU LV
C NU MV LW

=
= +
= + +

                                      (33)  

The first 12  natural frequencies were obtained from the Podlevskii procedure  
115.33, 365, 65, 432,97, 489.11, 543.3, 774.92, 

995.87, 1076.44, 1320.4, 1341.8, 1456.4, 1559.2 Hz 
The two-sided approximations of the first 5 the eigenvalues are presented in Table 1 
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Table 1. Two-sided approximations of the natural frequencies (Hz). 

frequency Left side Right side  
1 114.13 115.98 
2 361, 05 367, 44 
3 430,22 433,17 
4 487.10 490.01 
5 542.99 544.31 
6 770.42 775.33 
7 993.27 997.47 
8 1075.04 1077.15 
9 1318.40 1322.11 
10 1340.12 1343.08 
11 1455.40 1458.13 
12 1557.02 1560.42 

   
 

 
 

Fig.2. Influence of dimensionless displacement amplitude on natural frequencies for different modes. 
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We have no experimental results for the problem, so we built so-called experimental 
measurements for material by using an easy perturbation of the frequencies calculated with 
Podlevskii procedure. 

So, 18 measured natural frequencies are used for solving the inverse problem  
114.33, 365.65, 432.97, 489.11, 543.3, 774.92, 995.87, 1076.44, 1320.4, 1341.8, 1456.4, 1559.2,  

1678, 1805.4, 1988.3, 2290.45, 2654, 2876 Hz 
     The results obtained by applying a genetic algorithm are 

 0 15.3x = , 0 15.2y = − , 0 0.2z = , 52.9 10 ma −′ = × ,     
 0 4.19λ = ×λ , 0 3.87µ = ×µ , 0ϑ = ϑ , 0α = α , 0β = β , 0γ = γ  , 0 1.56ρ = ×ρ  . 

 
Figs. 2 and 3 give the influence of shear waves (dimensionless quantities 0U  and 0Φ ) on the natural 
frequencies for different modes. Mode 3 of the micropolar plate without/with defect is displayed in 
Fig.4. 

 

 
 

Fig.3. Influence of dimensionless microrotation on natural frequencies for different modes. 
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Fig.4. Mode 3 for micropolar plate without/with defect. 
 
The displacement around the cubic defect are illustrated via contour plots (Fig. 5). Due to the 

anisotropy of the defect, the displacement is strongly angle-dependent. 
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Fig.5. Displacement field in the vicinity of the cubic defect via the contour plotting. 

 
As we said before, the natural frequencies of a material represent its signature of the dynamic 

behaviour, and any defect or change into the internal structure of the material is felt by the vibrations 
in the sense of modifying their natural frequencies and also the vibration modes. 

5. CONCLUSIONS 

This paper shortly presents the micropolar nonlinear wave theory in order to develop an inverse 
approach for detecting the size and location of inhomogeneities embedded into a micropolar material. 
Based on the analysis of the interrelations between natural frequencies and the structure of the 
material, an inverse problem is built by minimization of the least square distance between computed 
and measured natural frequencies.  

To determine the natural frequencies, an iterative algorithm developed by Podlevskii, is used. In 
this way, the finding of two-sided approximations to the eigenvalues are performed. The algorithm 
uses a numerical procedure for calculating the first and second derivatives of the determinant. 

The inverse problem is based on a higher-order shear wave theory which accounts for parabolic 
distribution of the transversal shear amplitudes of the displacements and microrotations waves 
through the thickness of the plate. Due to the dimension of defects comparable with the average grain 
size, the shear displacements waves do not provide sufficient information for a correct solving of the 
inverse problem.  

The identification of defects is fast and simple to perform when both shear displacements and 
shear microrotation waves are used.   

The conclusion is that the influence of shear waves on the natural frequencies is very important 
for micropolar materials.  
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