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Abstract In this paper, the Coulomb vibrations are discussed in order to describe the 
motion of the double pendulum. The pendulum`s interest is associated to mechanical clocks, 
the metronomes and seismometers. The linear equivalence method (LEM) formulated by 
Toma (1995) is applied to define the Coulomb vibration as a particular solution of the 
nonlinear system of equations that describes the pendulum motion. The general solutions 
are written as a linear superposition of Coulomb vibrations.  

Key words:  Double pendulum, Coulomb vibrations, LEM. 

1. INTRODUCTION 

The vibration behavior of the double pendulum is rich and complex [1, 2]. The most 
application of pendulums is the clock. The first pendulum clock built in the 1600s was the most 
accurate clock for nearly 300 years. A pendulum inside the clock keeps the hands running on time, 
since the motion of a pendulum is a constant time interval. Seismometers and metronomes also use 
the pendulum to measure the seismic activity in the ground or to reading the music.  

The first pendulum was found in a seismometer in the time of the Han Dynasty. The pendulum 
work consists in activating a series of levers that directed a small ball to fall out of one of the 
instrument’s eight holes. The metronome emits a sound for each beat of a certain interval with the 
help of a pendulum [3].  

In this paper, the capability of the linear equivalence method is extended to obtain the 
analytical representations of the non-simple-regular solutions of pendulum describable as a linear 
superposition of Coulomb vibrations [4, 5]. The Coulomb vibration is an elementary function that 
describes a vibration unit used for developing the general solution. The solutions are designed to 
establish some qualitative conclusions, relevant for describing the correct dynamical behavior of the 
pendulum. For large motions it is a chaotic system, but for small motions it is a simple linear 
system. 

The method we have used is the linear equivalence method (LEM) formulated by Toma [6, 7]. 
The LEM is applicable for the integration of first-order differential nonlinear differential equations 
having algebraic nonlinearities and an arbitrary number of unknowns. This method becomes 
consistently in capturing qualitatively and quantitatively the contribution of all nonlinear terms and 
yielding highly accurate solutions. 
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2. EQUATIONS OF MOTION 
 
Fig. 1 shows a double pendulum consisted from two straight rods 1 2O O and 3 4O O of masses 

1M , 2M , lengths 12l , 22l , and mass centres 1C , 2C  [4, 8, 9-11]. The rods are articulated in 3O  and 
suspended in 1O , so that they can move in the vertical plane 1xO y  without friction. Other notations 
from fig. 1 are: 1 3l O O= , 1 1 1l O C= , 2 3 2l O C= .  We note by 1θ  and 2θ  the displacement angles in 
rapport to the vertical 1O x (degree of freedom), 1I  the mass moment of inertia of 1 2O O with respect 
to 1C , 2I  the mass moment of inertia of 3 4O O  with respect to 2C , and g  the gravitational 
constant. The forces acting upon the pendulum are the weights of bars. The generalised forces are 

                   1 1 1 1 2 1sin sinG M l g M gl= − θ − θ , 

   2 2 2 2sinG M gl= − θ  .                                      (1) 

 
Fig.1. Geometry of the system. 

 
The motion equations obtained from the Lagrange equations 
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are dimensionless quantities in the form 
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where dimensionless variables and coefficients are given by 
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The dot represents the differentiation with respect to the nondimensional variable t. By setting 

1 2
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, ,M llm r s
M l l

= = = ,                              (5) 

the motion of the double pendulum depends on the control parameters r , s  and m . It is simple to 
show that , ,α β γ  become 
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By introducing the new variables 

                    1 1 2 2 1 3 2 4 , , , ,z z z zθ = θ = θ = θ =                      (7) 

equations (3) are rewritten in the state-space form as 
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with  2
2 11 cos ( ) 0z z−αγ − ≠ .  

The system of equations (8) is rewritten in the form  
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and 0nh ≠ . It is assumed to be valid the summation law with respect to repeated indices 
 ( , , , 1, 2,3, 4)n p q r = . The constants are 
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and the rest are zero.   
The initial conditions are 

1 10 2 20 3 30 4 40(0) , (0) , (0) , (0) .z z z z z z z z= = = =                     (11) 

The linearized form of equations (2.12) is 
                                z Az= ,                                       (12) 

where  
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where 1ς = +αγ . The characteristic equation 0A I−λ =  

4 2 2 [ ( 1) (1 )] 0λ + ς β+ λ +βς −αγ = ,                        (14) 

admits the roots  1 2,ip ip± ± .   
  
 

3. THE LINEAR EQUIVALENCE METHOD (LEM) 

We analytically solve the nonlinear system of equations (9) and (11) by introducing the linear 
equivalence transformation (LEM) that depends on four parameters i Rσ ∈ , 1, 2,3, 4i =  [6-9] 
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with the associated initial conditions 
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Using (16), the system (15) is transformed into a nonlinear partial differential equation of the 
first order  
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where ( , , )D t vσ  is the formal nonlinear differential operator associated to (9). 
We look for a solution ( , )v t σ  of (17) under the form 
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and introduce it into (17). By using the series expansions for circular functions, the unknown 
functions ( )nA t , 1, 2,3,...,6n = , are determined by equating the terms of the same power in σ  and 
t . So, we obtain 

1
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and max0,1, 2,3,...k k= , 0,1, 2,3,...η =   
We determine, via numerical experimentation, which maxk (depending of η ) is relevant for 

capturing the contribution of all nonlinearities of governing equations.  So, we assess the efficiency 
of the method for max 7k = . For max 7k >  we do not have significant terms in solutions. In (19) the 
functions ( , )k tΦ µ η  and ( , )k tψ µ η  are given by 
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The quantities jλ  in (21) are 1 1pλ = , 2 1pλ = − , 3 2pλ = , 4 2pλ = − , where 1 2,ip ip± ±   are 
the roots of the characteristic equation (14). 

The unknowns nkA , nkB  in (19) are expressed by 
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The constants ( )nkB η , ( )nkC η  depend on initial conditions and on coefficients from governing 
equations. From (3.6) we obtain 
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The function ( , )tψ µ η  is linked to the ( , )tΦ µ η by 
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where the functions ),( ηµtFk  are the elementary Coulomb functions [10-12].  
These functions represent the elementary units of vibrations used in this paper to develop the 

general solutions of the pendulum motion. We have  

                   0 0( ,0) sin , ( ,0) cosF t t F t tµ = µ µ = µ .                        (32) 

So, the representation of the solution of the nonlinear system of equations (9) with the initial 
conditions (11) is found to be 

       ( ) ( ).n t nz A t=
                          

          (33) 

As mentioned above, the solutions of nonlinear equations that govern the motion of a double 
pendulum are written as a linear superposition of Coulomb vibrations.  

The first terms in (33) representing the linear part of the solution of (13) in the case of small 
oscillations ( 1n = ,2,  1,0=k , 0η = ) are 
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1 10 1 10 1 11 2 11 2(0)sin (0)cos (0)sin (0)cosz B p t C p t B p t C p t= + + + , 

2 20 1 20 1 21 2 21 2(0)sin (0)cos (0)sin (0)cosz B p t C p t B p t C p t= + + + ,                      (34) 

2
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where 1 2,p p  are roots of the characteristic equation (14), and the constants 20 21 20, ,B B C  and 21C   
are determined from initial conditions. 

For 0η =  and 2k >  in the solutions appear additional terms of the form 1 2sin( )ap bp t+  ,    

1 2cos( )ap bp t+  with a b+ 1,2,3...=  For 0η ≠  the solutions will contain the functions 

1 2[( ) , ]F ap bp t+ η  with a b+ 1,2,3...=  
 
 

3. NUMERICAL INVESTIGATIONS 
 

We assess the efficiency of our analysis in computing the representations of solutions for the 
double-pendulum. Numerical experiments on the solutions have shown that for the motion of 
pendulum is bounded and stable when initial conditions are chosen in the interval [-1.5, 1.5] . 

The double pendulum shows a sensitive dependence on initial conditions for the interval [-3, 
3].   

 
Fig.1. Solutions θ1(t) and θ2 (t) for Example 1. 
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Fig. 3 Solutions θ1(t) and θ2 (t) for example 2. 

Fig. 4. Error function ( )e t  between our solutions and Runge-Kutta solutions for Example 2. 

Two examples are carried out for the simulation: 
1.   m = 2, r = 2, s =1 ( α=0.3,  β =0.8, γ =1.5), 
2.  m = 7, r = 1, s = 2 (α=0.038, β=0.075, γ =15). 
Figs. 2 and 3 represent the solutions ( ), 1, 2i t iθ =  for considered examples. The solutions are 

stable, bounded and multi-periodic over the shown interval of time. For increasing t  the shape of 
solutions remains unchangeable.  

A comparison of the solutions with the numerical solutions obtained with the fourth-order 
Runge-Kutta scheme is performed. The numerical solutions are obtained by sewing the graphs on 
small intervals of time, with t∆ =0.01, to avoid deterioration of results. The error function )(te is 

defined as e t t t t t( ) ( ( ) ( )) ( ( ) ( ))= ′′ − ′ + ′′ − ′θ θ θ θ1 1
2

2 2
2 , where ( ′ ′θ θ1 2( ), ( )t t ) are our solutions and  
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( ′′ ′′θ θ1 2( ), ( )t t ) the numerical solutions obtained by Runge-Kutta scheme, applied to the same set of 
equations. The error function is represented in Fig. 4 for Example 2.  

The images of Fig 5 show the tendency of the pendulum to chaos for initial conditions in the 
interval [-3, 3].   

 

 
Fig. 5 Phase portraits 1 1( , )θ θ  and 2 2( , )θ θ  of the pendulum for initial conditions in the interval 

[-3, 3]. 
 

 

5. CONCLUSIONS 

Theoretical and numerical results have been presented for determining the analytical 
representation of solutions of the nonlinear equations that govern the motion of a double pendulum. 

The solutions are written as a linear superposition of Coulomb vibrations.   
The solutions allow the possibility of investigating in detail the effects of changing the 

parameters values , ,m r s . The solutions are stable, bounded and multi-periodic over the shown 
interval of time. The capability of the method can be extended to a qualitative analysis not only of the 
quasi-periodic behavior but also of the chaotic behavior of the pendulum. The results of this paper are 
encouraging to be applied also to other nonlinear dynamical systems with complex behavior [13, 14]. 
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