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Abstract. The propagation of sound waves in soft biological tissues (blood, veins, 
kidney, liver, lung, etc.) is described in this paper by using the Burgers’ equation. 
The propagation depends on the properties of the tissue at the ultrasonic range of 
frequencies over 20 kHz, with emphasis on the range 1–10 MHz. The propagation 
of waves in soft tissues is used for diagnostic and tissue therapy. Utility of the 
Burgers’ equation to sonification technique is highlighted next to a medical image 
used to surgical operation. 
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1. INTRODUCTION 

Burgers equation belongs to a class of nonlinear partial differential equations which possess  
the solitons or solitary waves as elementary solutions, like Korteweg–de Vries (KdV) and 
Schrödinger equations. These localized solutions conserve their properties after interaction with other 
waves, and are expressed by the Jacobi elliptic functions (cnoidal solutions) or the hyperbolic 
functions (solitons) with simple formulae for superposition [1].  

The Burgers’ equation describes the propagation of sound waves of finite amplitudes in solids, 
liquids and gases being characterized by distortion of the localized pressure field as the wave travels 
[2, 3]. The equation was first introduced by Harry Bateman in 1915 and studied by Johannes Martinus 
Burgers in 1948 [4, 5, 6]. The application of the Burgers’ equation to nonlinear acoustics is shown 
by Cole in 1949 [7] and Hopf in 1950 [8]. The Burgers’ equation describes the effect of dissipative 
effects to the finite-amplitude waves in acoustics, thermodynamics and hydrodynamics [9-14].  

The Burgers’ equation is written as 

 t xx xw w ww= + ,                             (1) 

where w  is the acoustic velocity, and the subscript means the differentiation with specified variable.  
This equation reminds of the Riemann equation 

0t xp pp+ = ,                             (2) 

as a particular case of (1), where p  is the pressure deviation of a medium (air, for example). The 
Riemann equation is used in nonlinear acoustic waves propagation for which the viscosity of the 
medium is not taken into account.  

The solutions of (1) can be obtained by using the Hopf - Cole transformation  
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  2( , ) xw x t u
u

= ,                              (3) 

where ( , )u x t  verifies the equation , ,t xxu u= . The common initial conditions attached to (1) are  

  ( )w f x=  at 0t = , x−∞ < < ∞ .                     (4) 

The general form of solutions of (1) is [15, 16] 
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From (5) and (6) the following solutions of (1) are obtained 
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with , ,A B λ , the arbitrary constants.  

Certain generalization of (1) are [17]:  

- Burgers-Huxley equation 

 2 3
t x xxu uu u u u u+ α = µ +µ + η − δ ,                     (13)  

- Kolmogorov-Petrovsky-Piskunov equation (Fisher equation) 
2

t xxu u u u= µ +µ + η ,                           (14) 

- Korteweg-de Vries-Burgers equation 

t x xxx xxu uu u u+ α + = µ ,                         (15)  

- Kuramoto-Sivashinsky equation 

 0t x xx xxx xxxxu uu u u u+ + α +β + λ = ,                     (16)  

The Burgers’ equation can take the form of the modified Westervelt equation  

2 3
0 0 02x

bw ww ww
c cτ ττ
β

− =
ρ

,                          (17) 
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with 0/t x cτ = − the retarded time, 0c  the velocity of sound propagation in the linear 
approximation, β  the Burgers coefficient which quantifies the nonlinear effects, 0ρ   density of 
medium and b  the coefficient of shear viscosity. The equation (17) is used to describe the 
propagation of waves in soft tissues [18-20].  

The exact solutions of nonlinear equations (13-17) are obtained by different methods such as 
tanh method [21], pseudospectral method [22], inverse scattering method [23], cnoidal method [1], 
Bakland transformation [24] and variational methods [25]. Also, there are some numerical iterative 
methods that are converging rapidly. 

2.  BURGERS’ EQUATION 

The propagation of waves in soft tissues is described by Burgers’ equation (17) 

     2 3
0 0 0

0
2x

bw ww ww
c cτ ττ
β

− − =
ρ

.                       (18) 

This equation admits semi-analytical solutions almost for any initial condition 0(0, )w x w= . 
These solutions provide a good opportunity to evaluate the properties of the wave motion through 
soft tissues. Equation (18) admits localized solutions known as cnoidal waves. These solutions 
conserve their properties at interaction with other waves. Like other equations (Schrödinger, 
Korteweg–de Vries, etc.) equation (18) has an infinite number of local conserved quantities, an 
infinite number of exact solutions and the simple formulae for nonlinear superposition of explicit 
solutions. The solution of (18) is searched under the form 
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where kx tη = −ω + φ , l  is a finite number of degree of freedom of the cnoidal functions, 0 1m≤ ≤  
is the moduli of the Jacobean elliptic function, ω  is frequency and φ  the phase, k  the wave 
number.  

For the tissue, the most important part of the acoustic attenuation is achieved through the viscous 
mechanism. In this case, the attenuation is given by the classical frequency free absorption coefficient 

2/a fα , where f is frequency [26] 

 2 3
0 02
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α

=
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.                             (20)  

So, the equation (18) can be rewritten in the form 

     2 2
0

0a
xw ww ww

c fτ ττ
β α

− − = .                      (21) 

The total attenuation in the tissue combines the absorption and scattering losses  

 a sα = α + α ,                             (22) 

where aα  is the amplitude absorption coefficient, and sα is the amplitude scattering coefficient. 
The intensity attenuation coefficient is given by 



40                            On the Burgers’ equation and application to wave propagation in soft tissues  

2a sµ = µ +µ = α .                           (23) 

3. SOLUTIONS 

Usually, the amplitude absorption coefficient in tissues are expressed as a function of frequency 

 n
a afα = ,                              (24) 

where ,a n  are constants and f  is frequency. For liver and brain for examples, the following 
expressions are used [26] 

33.3 0.2aliver fα = + ,                      (25)  

40.23 0.006abrain fα = + .                   (26)  

 

 
 

Fig. 1. The solutions (27) of the Burgers’ equation for different frequencies for (25). 
 
In the following we stop to 2l =   in (19), and we will see that there are no sensible 

improvements in solutions for 2l > .     
2
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where the parameters , ,α γ λ  are expressed in terms of 0 0, , ,c bβ ρ  and 0w . 
The solutions (27) of the Burgers’ equation for different frequencies are displayed in Fig.1, for 

(25), and Fig. 2 presents the solutions for different frequencies for (26), respectively. The horizontal 
axes is kx tη = −ω + φ , and the vertical scale is the acoustic velocity.  
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The Burgers’ equation (18) or (21) can be reduced to Riemann equation (2) if the viscosity 

vanishes ( 0b = ). In this case, the solution (27) is reduced to 

 1( , ) ( ( , ))pp x t x y x t
t

= − ,                       (28) 

where ( , )py x t is the coordinate of the absolute minimum of the function 

 2
0

1( , , ) ( ) ( )
2

f y x t s y t y x= + − ,                    (29) 

with 0( )s x  the initial potential of the pressure field.   

 
Fig. 2. The solutions (26) of the Burgers’ equation for different frequencies for (26). 

4. PROPERTIES OF THE BURGERS’ EQUATION 

The properties of the Burgers’ equation print a special behavior to the wave propagation. The 
space and time translations symmetry, the odd reflection symmetry and the Galilean invariance are 
the main symmetries of the equation [27].  

If ( , )w x t verifies the equation (18) then ( , )w x a t+  and ( , )w x t + τ , with ,a τ  arbitrary 
space and time translations, respectively, also verify the equation.  

It results that (18) verifies the translational symmetry 

 ( , ) ( , )w x t w x a t⇔ + + τ .                        (30) 

If ( , )w x t verifies (18) then ( , )w x t− −  also verify the equation (the odd reflection symmetry)  

 ( , ) ( , )w x t w x t⇔ − − .                        (31) 

The Galilean invariance means that the Burgers’ equation is invariant to the transformation 
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( , ) ( , ))w x t V w x Vt t= + − ,                        (32) 

where ( , )w x t′  is the velocity of the particles in the coordinate system x′moving with the velocity 
V . The invariance (32) allows to derive a family of simultaneously solutions starting from a given 
solution. For a known solution with the initial condition 0( )w x , we also known new solutions with 
the initial conditions  

0 0( )w w x V= + .                          (33) 

Two families of simultaneously solutions starting from a given solution are displayed in Fig. 3 
and Fig. 4, for 0.1 MHz and 0.5 MHz, respectively. 

 
Fig. 3. A family of solutions starting from a given solution of the Burgers’ equation at 0.1 

MHz. 
 
The symmetry properties are useful to evaluate the variation of the Burgers’ equation under a 

change of the length scale and the magnitudes of the initial field. 
If the initial velocity 0( )w x has the characteristic length scale l , and the magnitude U   

0 0( ) xw x Uu
l

 =  
 

,                          (34) 

then after the transformation  

xs
l

= , ( , )( , ) w sl tu s t
U

= ,                      (35) 

the equation (18) takes the form 
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Fig. 4. A family of solutions starting from a given solution of the Burgers’ equation at 0.5 

MHz. 
 

An interesting property of the Burger’ equation is the creation and annihilation of the wave picks 
due to a change of frequency 0 1ω ± ω . If the shift is positive the pick is created, and if the shift is 
negative the pick is annihilated (Fig. 5).  

 
 

Fig. 5. The wave pick creation and annihilation. 

5. APPLICATION TO SONIFICATION 

An interesting application of the Burgers’ equation is the sonification. The sonification 
technique is used to explore the tissues images with hardly detectable details. By applying the 
sonification, new images are obtained with a better visualization of the explored tissue [28, 29]. The 
approach was exercised on fictive images of fibrotic rat liver samples inspired from a study of effects 
of ginkgo biloba leaf extract against hepatic toxicity induced by methotrexate in rats in papers [30, 
31].  

The sonification procedure is: a digital image B seen as a collection of N pixels is subjected to 
the force ( )f t expressed as a sum of the excitation harmonic force ( )pF t  and the generation sound 
force ( )sF t . The last force is introduced to build the sonification operator. The behavior of the digital 
image is described by the Burgers’ equation (18). The force sF is determined from the minimum of 
the acoustic power radiated by B  
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where v  is the sound velocity and p the acoustic pressure vector, A is the area of the rectangular 
picture, and the subscriptT denoted the transpose. 

The unknown parameters { , , , , , , }P m k= ω φ α γ λ  are find by a genetic algorithm which 
minimizes the objective function ( )jPϒ  given by  
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After sonification, the mapped data is completed and filled with color and geometric lines, 
through continuity of solutions (27) in adjacent areas, so that the final image may contain details that 
do not appear in the original image.  

We consider now a fictive image of a coagulation necrosis area in the liver, and intentionally 
hide an area in this image (shown in green in Fig. 6a). Fig. 6b are the image used for sonification. 
The sonification to this image was successful in the sense that the initially hidden area is recovered 
(Fig. 6c). 

 
Fig. 6a. The MR image of a liver; b) an image with a hidden area used for sonification; c) the hidden area is 

found by sonification. 
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6. CONCLUSIONS 

The propagation of sound waves in soft biological tissues (blood, veins, kidney, liver, lung, etc.) 
is described in this paper by using the Burgers’ equation in the range of frequencies 1–10 MHz. The 
solution of the Burgers’ equation are determined by the cnoidal method. Solutions are localized waves 
that conserve their properties at interaction with other waves. The properties of symmetry of the 
Burgers’ equation, i.e. the space and time translations symmetry, the odd reflection symmetry and the 
Galilean invariance are the main symmetries of the equation are analysed.  

Utility of the Burgers’ equation to sonification technique is highlighted next on a medical image 
used to surgical operations. 

For a better application of the Burgers’ equation, the acoustic properties of the tissue at ultrasonic 
frequencies (acoustic velocity, ultrasonic attenuation and factors affecting the acoustic velocity and 
ultrasonic attenuation - temperature, frequency, anisotropy) and the mechanical properties of the 
tissue (mass density, elastic moduli, viscoelastic moduli and factors affecting elasticity and 
viscoelasticity) have to be well known.  

Ultrasonic speed, attenuation are functions of frequency. It is observed in the literature that 
acoustic speed in vitro is different between tumors and normal human liver. By comparison with 
normal liver, ultrasound propagates about 1.5% (± 1%) slower, is attenuated by about 20% (± 30%) 
less at 3 MHz in the tumor that were measured [33]. It is observed that the ultrasonic velocity 
decreases with increasing water and fat contents. An increase in the water content is related to the 
decreasing attenuation, and positive dependences exist between the acoustic characteristics and the 
fat content [34-36].  

The knowledge of the acoustic properties of the tissue at ultrasonic frequencies and the 
mechanical properties of the tissue is needed in surgical interventions where the surgeon and the robot 
are working with the same tool-tip, with the goal to minimize the vascular damages and bleeding [37-
39]. The inverse problem of extracting the acoustic properties of the tissue at ultrasonic frequencies 
and the mechanical properties of the tissue from experimental data represents a future work. 
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